Pancreatic beta cell identity is maintained by DNA methylation- mediated repression of Arx
نویسندگان
چکیده
Adult pancreatic beta cells can replicate during growth and after injury to maintain glucose homeostasis. Here we report that beta cells deficient in Dnmt1, an enzyme that propagates DNA methylation patterns during cell division, were converted to alpha cells. We identified the lineage determination gene aristaless related homeobox (Arx), as methylated and repressed in beta cells, and hypo-methylated and expressed in alpha cells and Dnmt1-deficient beta cells. We show that the methylated region of the Arx locus in beta cells was bound by methyl binding protein MeCP2 which recruited PRMT6, an enzyme that methylates histone H3R2 resulting in repression of Arx. This suggests that propagation of DNA methylation during cell division also ensures recruitment of enzymatic machinery capable of modifying and transmitting histone marks. Our results reveal that propagation of DNA methylation during cell division is essential for repression of alpha cell lineage determination genes to maintain pancreatic beta cell identity.
منابع مشابه
Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx.
Adult pancreatic β cells can replicate during growth and after injury to maintain glucose homeostasis. Here, we report that β cells deficient in Dnmt1, an enzyme that propagates DNA methylation patterns during cell division, were converted to α cells. We identified the lineage determination gene aristaless-related homeobox (Arx), as methylated and repressed in β cells, and hypomethylated and ex...
متن کاملNkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity
All pancreatic endocrine cell types arise from a common endocrine precursor cell population, yet the molecular mechanisms that establish and maintain the unique gene expression programs of each endocrine cell lineage have remained largely elusive. Such knowledge would improve our ability to correctly program or reprogram cells to adopt specific endocrine fates. Here, we show that the transcript...
متن کاملAn Effective Concentration of 5-Aza-CdR to Induce Cell Death and Apoptosis in Human Pancreatic Cancer Cell Line through Reactivating RASSF1A and Up-Regulation of Bax Genes
Background: Promoter hyper-methylation of tumor suppressor genes is a common event that occurs in cancer. As methylation is a reversible modification, agents capable of reversing an abnormal methylation status should help to combat cancer. 5-Aza-CdR is a DNA methyl-transferase inhibitor. The present study aimed to evaluate the effect of 5-Aza-CdR on the proliferation of human pancreatic cancer ...
متن کاملStudy of the role of siRNA mediated promoter methylation in DNMT3B knockdown and alteration of promoter methylation of CDH1, GSTP1 genes in MDA-MB -453 cell line
Promoter methylation is one of the main epigenetic mechanisms that lead to the inactivation of tumor suppressor genes during carcinogenesis. Due to the reversible nature of DNA methylation, many studies have been performed to correct theses epigenetic defects by inhibiting DNA methyltransferases (DNMTs). In this case novel therapeutics especially siRNA oligonucleotides have been used to specifi...
متن کاملStudy of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines
The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...
متن کامل